MONTE: The Method of Nonflat Time Evolution in PDE-based Image Restoration
نویسندگان
چکیده
This article is concerned with effective numerical techniques for partial differential equation (PDE)based image restoration. Numerical realizations of most PDE-based denoising models show a common drawback: loss of fine structures. In order to overcome the drawback, the article introduces a new timestepping procedure, called the method of nonflat time evolution (MONTE), in which the timestep size is determined based on local image characteristics such as the curvature or the diffusion magnitude. The MONTE provides the PDE-based restoration models with an effective mechanism for the equalization of the net diffusion over a wide range of image frequency components. It can be easily applied to diverse evolutionary PDE-based restoration models and their spatial and temporal discretizations. It has been numerically verified that the MONTE results in a significant reduction in nonphysical dissipation and preserves fine structures such as edges and textures satisfactorily, while it removes the noise with an improved efficiency. Various numerical results are shown to confirm the claim.
منابع مشابه
Explicit Nonflat Time Evolution for PDE-Based Image Restoration
This article is concerned with new strategies with which explicit time-stepping procedures of PDE-based restoration models converge with a similar efficiency to implicit algorithms. Conventional explicit algorithms often require hundreds of iterations to converge. In order to overcome the difficulty and to further improve image quality, the article introduces new spatially variable constraint t...
متن کاملImage Restoration Using A PDE-Based Approach
Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...
متن کاملTotal Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models
Most denoising and enhancement methods for color images have been formulated on linear color models, namely, the channel-by-channel model and vectorial model. In this paper, we study the total variation (TV) restoration based on the two nonlinear (or nonflat) color models: the chromaticity–brightness model and hue–saturation– value model. These models are known to be closer to human perception....
متن کاملVariational Restoration of Nonflat Image Features: Models and Algorithms
We develop both mathematical models and computational algorithms for variational denoising and restoration of nonflat image features. Nonflat image features are those that live on Riemannian manifolds, instead of on the Euclidean spaces. Familiar examples include the orientation feature (from optical flows or gradient flows) that lives on the unit circle S, the alignment feature (from fingerpri...
متن کاملImage Restoration by Variable Splitting based on Total Variant Regularizer
The aim of image restoration is to obtain a higher quality desired image from a degraded image. In this strategy, an image inpainting method fills the degraded or lost area of the image by appropriate information. This is performed in such a way so that the obtained image is undistinguishable for a casual person who is unfamiliar with the original image. In this paper, different images are degr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005